

come to a clinical setting also.

oxygen, and carbon dioxide levels.

by means of 100 micro needles on a 1cm square patch.

center of our research and design.

ACS Appl. Mater. Interfaces 2021, 13, 7, 8071-8081

The ASSIST RET and Young Scholar programs are funded by NSF Nanosystems Engineering Research Center Grant EEC 1160483.

Research Experiences for Teachers and Young Scholars in Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST)

Michael Giddens¹, McKenna Downey², Chris Sharkey², Dr. Michael Daniele²

Hobbton Middle School Sampson County Schools, School of Bio Medical Engineering NC State University

SSISI

Paper Pump # Timing Microfluidics of paper pump designs	Design	Paper Porosity Grade	Time Test 1	Time Test 2	Time Test 3
Pump 1 (drops each 20sec) 100 ul pipet & tip	Straight 5cm	4	2-42s	2-46s	2-53s
Pump 2(drops each 20sec) 100 ul pipet & tip	Taper In 5cm	4	3-53s	3-38s	3-48s
Pump 3 (drops each 20sec) 100 ul pipet & tip	Taper Out 5cm	4	3-05s	3-15s	2-38s
Pump 1 (paper weight chg)	Grade	1	2-38s	2-28s	2-41s
Pump 2 (paper weight chg)	Grade	1	3-42s	3-37s	3-35
Pump 3 (paper weight chg)	Grade	1	3-01s	3-42s	2-49s
Pump 4 (drops @20sec)	Straight 9cm Width 0.5cm	4	5-15s	6-20s	6-30s
Pump 5 (drops @20sec)	Straight 9cm Width 0.25cm	4	5-12s	5-08s	5-44s
Pump 6 (drops @20sec)	Straight 9cm Width 0.5cm	1	6-29s	6-38s	6-39s
Pump 7 (drops @20sec)	Straight 9cm Width 0.25cm	1	6-15s	6-46s	6-33s

Timed testing of the microfluidic rate of each variable

Future Research

Continued research and engineering design is needed to solve the microfluidic challenge. The collection of the interstitial fluid from the micro needle patch and the flow to the collection area. Such research may include pump designs, inclusion of micro venturi within the channel, the width/length of pump channel, and porosity grade of the filter paper. The importance and future success of this project (device) is a paradigm shift in medical care.

Acknowledgement

Thank you to Dr. D and all members of his research team in the BME lab at NCSU for sharing their lab, their assistance, and willingness to share their knowledge. Special thanks to McKenna for research shared, lab work, and time. Thanks to the CSAT team at Penn State for the RET experience, a true leverage. Thanks to my students for their encouragement. Thank you to all! That's cool science folks!~mg

